PHYSICS 242 BLOCK 7 DRILL SET, SPRING '17 NAME		
Slide this paper under Marteena 308's door any time before 7:50 AM Friday, March 3, or give it to me in		
Marteena 312 by 8:00 AM that day. Use one different equation from the Block 7 objectives per problem.		
1. I we could have a mutual inductance of 55.1 mH. Find the mutually-induced emf in coil 1 at $t = 3.45$ ms, when the current in coil 1 is constant at 1.111 Å and the current through coil 2 is decreasing at a rate of 2120 Å/s		
ONE EOUATION USED SOLUTION ANSWER		
2. What magnitude magnetic field would be required to store one hundred kilowatt-hours (360 MJ) of magnetic		
potential energy in each cubic meter of vacuum or nonmagnetic material?		
ONE EQUATION USED	SOLUTION	ANSWER
	$I_{1159} \mu =$	
	1 use μ –	
	and $u = $.	
2 Coil 1 has 101 turns and as	12 has 202 turns. When a constant summert of 1 111 A flow	a in agil 1 and no gumant
flows in coil 2 the average magnetic flux from this 1 111 A current is 0 707 mWb through each turn of coil 1 and		
0.303 mWb through each turn of coil 2. (Of course, the zero current in coil 2 gives zero magnetic flux through		
each turn of each coil.) Find th	ne numerical value of the mutual inductance of the two coils.	0
EQUATION USED (ONE =	SIGN) SOLUTION	ANSWER
=		
4 Use the data in Problem 3 a	hove to find the numerical value of the self-inductance of o	ne of the two coils (The
self-inductance of the other coil is indeterminate because zero current gives zero magnetic flux.)		
EQUATION USED	SOLUTION	ANSWER
		The self-inductance
		of coil is
		·
5. The electric flux is $(5.0 \text{ V} \cdot \text{m/s}^4)t^4$ through a certain area of a dielectric. Its dielectric constant is 2.8 so its		
permittivity is 2.5×10^{-11} F/n	h. Find the displacement current through that area at $t = 3.0$ s	
EQUATION USED	SOLUTION (SHOW ALL YOUR WORK.)	ANSWER